
•The best way to learn Git (and other tools):
1. Use it
2. Find inability/inefficiency in your workflow
3. Google a (better) solution
4. Use it and build the muscle memory

•Your gain = A constant x Your time spent on practicing

1. Overview of Git

• What is Git?
A distributed version control system
Everyone has the whole commit history and acts like a server
• Three application situations (that I know):
- track the history of the development
- develop on multi-branches simultaneously
- Collaborative development

What is Git?
A Version Control Tool.

Info in each commit:
SHA-1 checksum
Commit message
Time stamp
Creator

2. Create a branch

3. Merge two branches

1. Commit new content

1. Overview of Git

Commit

Branch

Merge

1. Overview of Git

• How to create a Git repository?
1. Run git init in the terminal.
2. Run git clone some_remote_repo to clone remote repository

• How to commit new content
1. Modify files
2. Stage the modified files (Pack the modifications)
3. Commit the modification (Commit message is necessary)

• How to undo changes?
a. undo modified: git restore filename
b. undo staged (staged content will become modified):

I. git reset HEAD -- filename
II.git restore --staged filename

c. TUVundo committed: git reset --hard some_check_sum (All the commits after will be lost)
d. TUVclear modified and staged: git reset --hard HEAD

Why do we need stage operation?
We may only want to commit part of the modification.

2. Change, stage and commit

Modified Staged Committed

git add git commit

git restore --staged

• Three states of files for tracked files

• How to create a new branch? git branch branch_name
• How to switch between branches? git checkout branch_name
• How to do them together? git checkout -b branch_name
• How to delete a branch? git branch -d branch_name
• How to merge other branch to the master one?

1. git checkout master
2. git merge other_branch_name

WARNING:
If there are some tracked-and-modified/staged content, you need to commit/stash them before
you change the branch.

3. Branches

• Each branch has a HEAD pointer. And all the commits ahead of the HEAD pointer is undefined.
• All the branches share a common tracked-and-modified area and a common stage area.
• Stash will save the modified/staged content in a stack.

Application of git diff:
1. Commit new content
2. Merge two branches

A
B
C
A
B
B
A

C
B
A
B
A
C

1. Minimal changes

2. Delete first

3. Follow code structure

--diff-algorithm={patience|minimal|histogram|myers}

4. Git diff and merge

Example:

Hunk: one set of changes
-198, 10: line [198, 198 + 10) in the old file
+202, 14: line [202, 202 + 14) in the new file
-red: deleted content
+green: added content

Git diff:
1. between modified and HEAD: git diff <filename>
2. between modified and any commit: git diff <commit> <filename>
3. between staged and any commit: git diff --cached <commit> <filename>
4. between two commits: git diff <commit_1> <commit_2> <filename>

4. Git diff and merge

Merge B2 with M2 to get M3?
(Three-way merge)
1. find their most close common ancestor: M1
2. git diff M1 B2
3. git diff M1 M3
4. compare each hunk

same changes bc accept
different changes bc conflict

M1

C1 C2

B1 B2

M2 M3

4. Git diff and merge

Merge C2 with M1 to get M2

• How to link to a remote repo?
1. git clone remote repo
2. git remote add origin git@github.com:ChenYangyao/hipp.git

• How to sync with the remote repo?
1. git fetch origin
2. git merge origin (fetch + merge = pull)
3. fix conflicts if there are any
4. git push (remote_repo) (branch)

• Tips:
• Do not do changes directly on remote repo;
• Interact with remote repo only though push/pull;
• Always do pull before push;
• Keep a clean master branch;

5. Remote repository

6. gitignore

Ignore unnecessary files,
especially large ones!
e.g. data file, executable files etc.

All committed files will be in the
repository permanently.

6.Plugins in Neovim

tpope/vim-fugitive

6.Plugins in Neovim

tpope/vim-fugitive

6.Plugins in Neovim

tpope/vim-fugitive

6.Plugins in Neovim

tpope/vim-fugitive

lewis6991/gitsigns.nvim

6.Plugins in Neovim

junegunn/gv.vim

6.Plugins in Neovim

